Optimality of spectral clustering in the Gaussian mixture model
نویسندگان
چکیده
Spectral clustering is one of the most popular algorithms to group high- dimensional data. It easy implement and computationally efficient. Despite its popularity successful applications, theoretical properties have not been fully understood. In this paper, we show that spectral minimax optimal in Gaussian mixture model with isotropic covariance matrix, when number clusters fixed signal-to-noise ratio large enough. gap conditions are widely assumed literature analyze clustering. On contrary, these needed establish optimality paper.
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملMultivariate Data Clustering for the Gaussian Mixture Model
This paper discusses a soft sample clustering problem for multivariate independent random data satisfying the mixture model of the Gaussian distribution. The theory recommends to estimate the parameters of model by the maximum likelihood method and to use “plug-in” approach for data clustering. Unfortunately, the calculation problem of the maximum likelihood estimate is not completely solved in...
متن کاملA Novel Evolutionary Clustering Algorithm Based on Gaussian Mixture Model
Estimating the optimal number of clusters for a dataset is one of the most essential issues in cluster analysis. Traditional clustering algorithms usually predefine the number of clusters via random selection or contend based knowledge. An improper pre-selection for the number of clusters may easily lead to bad clustering outcome. In order to address this issue we propose in this paper a new ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Statistics
سال: 2021
ISSN: ['0090-5364', '2168-8966']
DOI: https://doi.org/10.1214/20-aos2044